Serveur d'exploration sur l'agrobacterium et la transgénèse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.

Identifieur interne : 000187 ( Main/Exploration ); précédent : 000186; suivant : 000188

Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.

Auteurs : Vivien Rolland [Australie]

Source :

RBID : pubmed:29978408

Descripteurs français

English descriptors

Abstract

In plants, stable expression is arguably the method of choice to test transgene function but it is a slow and labor-intensive process. This bottleneck generally limits the number of transgenes that can be tested, and as such hinders construct optimization. In the face of this challenge, transient expression in Nicotiana benthamiana leaves has emerged as a powerful screening platform to test gene expression, as well as subcellular distribution and function of many proteins within a week. This system relies on the infiltration of Agrobacterium tumefaciens (Agrobacterium) carrying DNA of interest into the leaf air spaces of N. benthamiana plants. Agrobacterium rapidly transforms the plant cells and the leaves can be analyzed within a few days. Investigating the subcellular localization of a protein of interest often relies on its fusion to a fluorescent tag. While the amount of accumulation of such fusion proteins can often be gauged by observing the fluorescence of the tag at the whole-leaf level, subcellular protein distribution is best determined in protoplasts extracted from transformed leaves. Here I present a simple and effective method to transform N. benthamiana leaves with Agrobacterium and to prepare protoplasts from these leaves to characterize the subcellular localization of proteins of interest.

DOI: 10.1007/978-1-4939-7786-4_16
PubMed: 29978408


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.</title>
<author>
<name sortKey="Rolland, Vivien" sort="Rolland, Vivien" uniqKey="Rolland V" first="Vivien" last="Rolland">Vivien Rolland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture & Food, Canberra, 2601, ACT, Australia. vivien.rolland@csiro.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture & Food, Canberra, 2601, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29978408</idno>
<idno type="pmid">29978408</idno>
<idno type="doi">10.1007/978-1-4939-7786-4_16</idno>
<idno type="wicri:Area/Main/Corpus">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000163</idno>
<idno type="wicri:Area/Main/Curation">000163</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000163</idno>
<idno type="wicri:Area/Main/Exploration">000163</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.</title>
<author>
<name sortKey="Rolland, Vivien" sort="Rolland, Vivien" uniqKey="Rolland V" first="Vivien" last="Rolland">Vivien Rolland</name>
<affiliation wicri:level="1">
<nlm:affiliation>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture & Food, Canberra, 2601, ACT, Australia. vivien.rolland@csiro.au.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture & Food, Canberra, 2601, ACT</wicri:regionArea>
<wicri:noRegion>ACT</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Methods in molecular biology (Clifton, N.J.)</title>
<idno type="eISSN">1940-6029</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cytoplasm (metabolism)</term>
<term>Intracellular Space (metabolism)</term>
<term>Microscopy, Fluorescence (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Recombinant Fusion Proteins (genetics)</term>
<term>Recombinant Fusion Proteins (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cytoplasme (métabolisme)</term>
<term>Espace intracellulaire (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Microscopie de fluorescence (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines de fusion recombinantes (génétique)</term>
<term>Protéines de fusion recombinantes (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Transport des protéines (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cytoplasm</term>
<term>Intracellular Space</term>
<term>Plant Leaves</term>
<term>Plant Proteins</term>
<term>Recombinant Fusion Proteins</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytoplasme</term>
<term>Espace intracellulaire</term>
<term>Feuilles de plante</term>
<term>Protéines de fusion recombinantes</term>
<term>Protéines végétales</term>
<term>Tabac</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Microscopy, Fluorescence</term>
<term>Phenotype</term>
<term>Protein Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Microscopie de fluorescence</term>
<term>Phénotype</term>
<term>Transport des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In plants, stable expression is arguably the method of choice to test transgene function but it is a slow and labor-intensive process. This bottleneck generally limits the number of transgenes that can be tested, and as such hinders construct optimization. In the face of this challenge, transient expression in Nicotiana benthamiana leaves has emerged as a powerful screening platform to test gene expression, as well as subcellular distribution and function of many proteins within a week. This system relies on the infiltration of Agrobacterium tumefaciens (Agrobacterium) carrying DNA of interest into the leaf air spaces of N. benthamiana plants. Agrobacterium rapidly transforms the plant cells and the leaves can be analyzed within a few days. Investigating the subcellular localization of a protein of interest often relies on its fusion to a fluorescent tag. While the amount of accumulation of such fusion proteins can often be gauged by observing the fluorescence of the tag at the whole-leaf level, subcellular protein distribution is best determined in protoplasts extracted from transformed leaves. Here I present a simple and effective method to transform N. benthamiana leaves with Agrobacterium and to prepare protoplasts from these leaves to characterize the subcellular localization of proteins of interest.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29978408</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1940-6029</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>1770</Volume>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>Methods in molecular biology (Clifton, N.J.)</Title>
<ISOAbbreviation>Methods Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.</ArticleTitle>
<Pagination>
<MedlinePgn>263-283</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/978-1-4939-7786-4_16</ELocationID>
<Abstract>
<AbstractText>In plants, stable expression is arguably the method of choice to test transgene function but it is a slow and labor-intensive process. This bottleneck generally limits the number of transgenes that can be tested, and as such hinders construct optimization. In the face of this challenge, transient expression in Nicotiana benthamiana leaves has emerged as a powerful screening platform to test gene expression, as well as subcellular distribution and function of many proteins within a week. This system relies on the infiltration of Agrobacterium tumefaciens (Agrobacterium) carrying DNA of interest into the leaf air spaces of N. benthamiana plants. Agrobacterium rapidly transforms the plant cells and the leaves can be analyzed within a few days. Investigating the subcellular localization of a protein of interest often relies on its fusion to a fluorescent tag. While the amount of accumulation of such fusion proteins can often be gauged by observing the fluorescence of the tag at the whole-leaf level, subcellular protein distribution is best determined in protoplasts extracted from transformed leaves. Here I present a simple and effective method to transform N. benthamiana leaves with Agrobacterium and to prepare protoplasts from these leaves to characterize the subcellular localization of proteins of interest.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rolland</LastName>
<ForeName>Vivien</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture & Food, Canberra, 2601, ACT, Australia. vivien.rolland@csiro.au.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Methods Mol Biol</MedlineTA>
<NlmUniqueID>9214969</NlmUniqueID>
<ISSNLinking>1064-3745</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011993">Recombinant Fusion Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003593" MajorTopicYN="N">Cytoplasm</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042541" MajorTopicYN="N">Intracellular Space</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008856" MajorTopicYN="N">Microscopy, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011993" MajorTopicYN="N">Recombinant Fusion Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Agrobacterium tumefaciens</Keyword>
<Keyword MajorTopicYN="Y">Agroinfiltration</Keyword>
<Keyword MajorTopicYN="Y">Fluorescent proteins</Keyword>
<Keyword MajorTopicYN="Y">GFP</Keyword>
<Keyword MajorTopicYN="Y">Nicotiana benthamiana</Keyword>
<Keyword MajorTopicYN="Y">Protein targeting</Keyword>
<Keyword MajorTopicYN="Y">Protoplasts</Keyword>
<Keyword MajorTopicYN="Y">Subcellular localization</Keyword>
<Keyword MajorTopicYN="Y">Transient expression</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>7</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29978408</ArticleId>
<ArticleId IdType="doi">10.1007/978-1-4939-7786-4_16</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
</list>
<tree>
<country name="Australie">
<noRegion>
<name sortKey="Rolland, Vivien" sort="Rolland, Vivien" uniqKey="Rolland V" first="Vivien" last="Rolland">Vivien Rolland</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/AgrobacTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000187 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000187 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    AgrobacTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29978408
   |texte=   Determining the Subcellular Localization of Fluorescently Tagged Proteins Using Protoplasts Extracted from Transiently Transformed Nicotiana benthamiana Leaves.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29978408" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a AgrobacTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 15:45:55 2020. Site generation: Wed Mar 6 15:24:41 2024